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Introduction: 
 
This is a Canonical Variates Analysis program for the analysis of shape, based on partial 

warp scores, and is part of the IMP software series.  Canonical Variates Analysis is a 

method of finding the set of axes (or linear combination of variables) that allows for the 

greatest possible ability to discriminate between two or more groups.  The program 

computes partial warp scores to a common reference and then does a Manova followed 

by a CVA.  It determines how many distinct CVA axes there are in the data at a p=0.05 

level of significance, and computes the canonical variates scores of all the specimens 

entered.  It also uses Mahalanobis distances to assign all the loaded specimens to one of 

the groups loaded. 

The image below shows the Bookstein coordinates of variables from the example file, 

threepir.txt, which contains three groups of piranha.  

 



 

There are two distinct canonical variates axes for this set of three groups, and the 

canonical variate scores of these same specimens plotted along the canonical variates 

axes shown below illustrate the clear ability to separate these three groups. 
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There are a couple of recent additions to CVAGen (as of June 2002), including the ability 

to plot the mean of each groups CVA axes scores on a CVA axes plot, the ability to use 

the CVA axes determined by a number of known groups to assign unknown specimens to 

one of the known groups (using the Mahalanobis distance from the specimen to the mean 

of the nearest group).  The validity of the assignments of specimens (from either a known 

group or an unknown) group can then be assessed using an assignment test that estimates 

the probability that a given specimen could be at a given observed Mahalanobis distance 

from the group mean by chance (based on the approach outlined by Cornuet et al. 1999).  



The figure below shows the same set of three groups of piranha, with an “unknown” 

group added to the analysis, and the mean value of the CVA scores of each group also 

shown on the plot.  The mean value of the CVA scores for each group are the large 

symbols in the rough center of each group (the black circle is admittedly hard to see).  

The magenta symbols in this plot are shown in black. 
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There is an option available which will number the specimens on the CVA axis plot, and 

there is a zoom option on the Axis Controls menu that will allow you to zoom in on the 

plot. 



 
Using CVAGen6 
 
I haven’t had time to write a complete manual for CVAGen to date, just what is presented 

here.  The operation of the program is very similar to that used by PCAGen, so obtain 

that program and it’s manual if you have not done so already. 

 
File Formats 

CVAGen6 uses the same file formats as the PCAGen6 program, and essentially the same 

control format.  If you haven’t used PCAGen6, obtain it, read the manual and run it 

before proceeding with CVAGen6.  The grouplist is required for CVAGen6 (unlike the 

optional group list in PCAGen6).  If you will be working with unknown specimens 

(which is an option, not a requirement), these specimens must be in a separate IMP file, 

with a separate grouplist for the unknown specimens as well. 

 

Sample Files 

The files threepir.txt and threepirgrp.txt are a text file of three species of piranha and the  
 
associated group file necessary to run CVAGen6.  Try these files to get a sense of how  
 
the program operates. 
 

Tests of significance of the CVA axes used in CVAGen 

 

The tests of significance of the canonical variate axes in CVAGen are all based on the 

Wilk’s lambda (λ) value, which is the sum of squares within groups divided by the total 

sum of squares within and between groups 

  



λ=   |W| / |W+B|  =  |W| / |T| 

 

Bartlett’s test then uses the following test statistic 

 

 Χ2 = -(w – (p-b+1)/2) lnλ 

 

where Χ2 has an approximately chi-squared distribution, w is the degrees of freedom for 

the within group sum of squares, b is the degrees of freedom for the within group sum of 

squares and p is the number of variables, to determine if there are g = b+1 distinct groups.  

The degrees of freedom within is w=n-b, where n is the total number of samples and g is 

the number of groups. 

The results of these tests will appear onscreen in a new window (the Auxillary Results 

Box) when you load the group list file.  The contents of this window may be appended to 

a text file, by using the Append Results to File button on the bottom of the window.  Note 

that if the filename you specify does not already exist, the Append Results to File Button 

will create a new text file to put the results in.  You might sometimes get a warning 

message about overwriting a file.  Don’t worry about this message when using this 

option, it won’t really overwrite the file, but rather will append it. 

 

 

 



Output from Sample files 

Below are the results obtained from the sample files.  The first section lists the Wilk’s 

Lambda value, chi-squared value and degrees of freedom as well as the p score for the 

various number of  CVA axes (not axis, gotta fix that!). 

Results from CVA/Manova                                    
Axis 1 Lambda= 0.0031 chisq=430.9308 df=56 p<2.22045e-016  
Axis 2 Lambda= 0.0684 chisq=199.7954 df=27 p<2.22045e-016  
Groupings from CVA-Distance Based                       
                                                        
 Original Groups along rows, CVA groups along columns   
 -                                                      
 -   0   1   2   3                                      
 -   1  21   0   0                                      
 -   2   0  32   0                                      
 -   3   0   0  38                                      

The second section shows the assignments of specimens to various groups, based on the 

Mahalanobis distance in the space defined by the significant CVA axes.  The original 

groups are along the rows of the matrix, the predicted group (from the CVA) is along the 

columns.  In this case, all specimens were assigned to the correct groups.   The 

Assignments test discussed later can be used to assess the reliability or validity of these 

assignments. 

In the second example shown below, there were 9 groups and 8 significant axes.  

Membership assignment was always correct for groups 1 and 3, but specimens in Group 

two were also asigned to groups 7 (4 specimens) and 8 (1 specimen). One specimen from 

group 4 was assigned to group 5, one specimen from group 5 was incorrectly assigned to 

group 6, and so forth. 

 

Groupings from CVA-Distance Based                       
                                                        
 Original Groups along rows, CVA groups along columns   
 -                                                      
 -   0   1   2   3   4   5   6   7   8   9              
 -   1  31   0   0   0   0   0   0   0   0              



 -   2   0  16   0   0   0   0   4   1   0              
 -   3   0   0  32   0   0   0   0   0   0              
 -   4   0   0   0  45   1   0   0   0   0              
 -   5   0   0   0   0  37   1   0   0   0              
 -   6   0   0   0   0   7  33   0   0   0              
 -   7   0   9   0   0   0   0  77   3   0              
 -   8   0   1   0   0   0   0   1  32   0              
 -   9   0   0   0   0   0   0   0   0  37              
 

 

Displaying Results 

CVA Axis 
 
 The program can plot out the deformation implied by the CVA axes or the change 

in shape obtained by regressing the shape on the CVA axis scores. There is a pushbutton 

labeled Regr? on the screen in the Display CVA Axes section that control which you will 

see, if this button is pushed (black) you will see the regression deformation.  The 

regression shows you all the changes in shape that are correlated with the CVA axis 

score, the CVA axis itself does not show all the correlated change in shape.  

 

Show Deformation Implied by CVA 

 

These options let you place two markers on the scatter plot of CVA scores, and 

then shows you the deformation implied by the markers, relative to the reference form.   

This allows you to see the effects of differences along two CVA axes at the same time. 

 



 

Assignment of specimens to groups 

 

A simple Mahalanobis distance-based approach is then used to determine which group 

each specimen belongs to, based on the canonical variate scores.  The predicted group 

membership of each specimen based on the CVA scores is determined by assigning each 

specimen to the group whose mean is closest (under the Mahalanobis distance) to the 

specimen.  Note that this is not a sophisticated approach to partitioning the space 

determined by the CVA axis, but it was algorithmically simple.  I would like to find 

something better than this, but for now, it is better than nothing. 

CVAGen produces a matrix showing group assignments, the original (user-assigned) 

groups are rows of the matrix, the new groups are along the columns of the matrix.  The 

rows and columns are labeled with the group codes from the group list file input into the 

program.  Study of this matrix allows the user to assess how effective the CVA is at 

separating groups, and which groups were not successfully separated.  If you have a set 

of unknown specimens, their assignments will be listed on a separate row (labeled u) 

below the matrix. 



 

Example of the group assignments matrix: 

Groupings from CVA-Distance Based  

  Original Groups along rows, CVA groups along columns  

  -  

  -   0    1     2     3  

  -   1    21   0     0  

 -  2     0    32   0  

  -   3     0    0     38 

  -u        34   0    0 

 

This example indicates that of the 21 specimens assigned by the user to group 1, all were 

assigned by the CVA process to group 1, of 32 specimens in the user’s group 2, all were 

assigned to group 2 and of the 38 specimens in the user’s group 3, all were assigned to 

the user’s group 3.  All of the thirty four unknowns (actually a different species), all of 

them were assigned to group 1. 



Jack-knife test of group assignments-(added March 2005) 

In the CVAGen6n version, I have added the ability to jackknife the assignment of 

specimens to groups.  During this procedure, a single specimen is excluded from the 

CVA analysis at a time, and the entire analysis is repeated without that particular 

specimen.  The excluded specimen is then assigned to one of the groups using the CVA 

axes derived from other specimens.  This procedure is repeated sequentially for all 

specimens in the data set.  The rate of correct assignments of excluded specimens is then 

calculated based on these results.  This jackknife procedure may be a better estimate of 

the performance of the assignment procedure, since the assigned specimens are not used 

during the axes calculation, avoiding some level of circularity in the procedure.  This test 

is available on the statistics menu. 

 

PCA Reduction of the Number of Variables (added March 2005) 

 

The CVA analysis requires a matrix inversion of the pooled variance-covariance matrix 

of within group variation in shape.  If this matrix is not of full rank, it cannot be inverted 

and the program will produce an error.  The matrix will not be of full rank if there are 

more measurements per specimen than total specimens in the analysis.  This is 

particularly a problem when using semi-landmarks, which greatly increase the number of 

measurements per specimen, particularly since semi-landmarks have only one degree of 

freedom but two measurements. 

One approach is to carry out a PCA analsis of the data, and discard some portion of the 

PC axes scores to reduce the number of variables.  In fact, if we discard only the PCA 



axes with zero eigenvalues (which explain no variance), we will not lose any of the 

variance in the original data.  This means that if we use a number of PC axes equal to one 

less than the specimen count, no variance is lost and difficulties related to matrix 

inversions in the CVA are eliminated. 

To use this option in CVAGen6n, load your specimens, then set the number of PCA axes 

to use and select the PCA reduction option on the lower left edge of the screen, before 

loading the group code file.  Note that once the group code is loaded, the CVA analysis is 

executed, so you must select the PCA reduction prior to this point. 

 

 

Working with a Set of Unknown Specimens 

 

One possible use (to be regarded with some caution, despite it’s appeal!) of the 

CVA is to use the CVA axes to assign an unknown specimen to one of the known groups.  

To carry out this procedure, the unknown specimen (or specimens) must be digitized, 

using the same set of landmarks as in the known specimens.  The “unknown” specimens 

are then placed in an IMP format file, and a grouplist is constructed for the unknown 

specimens (this grouplist will be used only for color-coding, not in calculations).   

 Once you have the “unknowns” file and grouplist prepared, load your known 

specimens and their grouplist into CVAGen6 and carry out the usual CVA analyses.  The 

known groups are used to determine the CVA axes, the unknowns are not used during the 

axis construction.  After the axes are constructed successfully, use the Load Unknowns 

File option from the File Menu to load the unknowns.  Next, use the Load Unknown 



Group List option from the File Menu to load the group list for your unknown specimens.  

When you load this file, the program will plot the landmark configurations of all 

specimens (known and unknown) in Procrustes Superimposition on the reference form 

used for the known specimens.  You may now plot the CVA axes, and the unknown 

specimens will also be shown on this plot.   

 To see the assignments of specimens (known and unknow) to groups, you can see 

a summary table of group assignments by using the Show Groupings by CVA on the 

Statistics menu, or you can use the Run Assignments Test on the Statistics menu. 

If you are using the PCA reduction method, the unknown specimens will be analysed 

using their scores along the PC axes determined by the known specimens. 

 

The Assignments Test 

 

The assignment test discussed hereafter is modeled on an assignment test in the 

literature (Cornuet et al. 1999, Piry and Cornuet 1998), and appears in Nolte and Sheets 

(2005) 

 

 The specimens are assigned to groups by determining the Mahalanobis distance 

(along the significant CVA axes only) of each specimen from the mean value of the CVA 

scores for each group, and then assigning each specimen to the closest group.  Note that 

the distanced used is not a variant of a Procrustes distance, but a Mahalanobis distance.  

This is one of the few instances in the IMP software where a distance other than a 

Procrustes distance is used. 



 The question that should then arise is how do we assess the validity or probability 

of these group assignments?  How “good” are the assignments? 

 The approach used here follows the distance-based approach used by Cornuet et 

al. (1999).   The distribution of distances produced by a Monte Carlo simulation is used 

to determine if the observed distance of a given specimen is consistent with the null 

model of random variation around the mean of the group to which the specimen is 

assigned to.  The distance from a specimen to a group mean can then be assigned a p-

score which describes how likely the specimen is to be a member of a group (under the 

null model used in the Monte-Carlo simulation).  If the p score is smaller than 5%, then 

we can assert that there is a less than 5% chance that random variation could have 

produce a distance as large as that of the particular specimen from the group mean, and 

hence that the assignment of that specimen to the group is in doubt.  A very low p score 

(1% or less) means that it is highly unlikely by chance that the specimen does belong the 

group it was assigned to.  It should be noted that in a study with many specimens, a 

number of them will have low p-scores by chance (the Bonferroni problem), and so to 

assess the validity of the assignments of the set as a whole, the researcher should assess 

the number of specimens expected to have p values less than 5%.  It will then be possible 

to determine if the observed number of low p values exceeds that expected by chance. 



 

Details of the Monte-Carlo simulation of the distribution of Mahalanobis Distances 

around each group mean. 

 The model used in the Monte Carlo simulation of the distribution of Mahalanobis 

distances of specimens within a group around the group mean is based on a normal model 

of the distribution of the CVA scores of each group about the mean of that group.  For a 

given group, it appears possible that the CVA scores along each CVA axes for the 

specimens within the group are correlated, that there exists within each group a 

covariance structure to the CVA scores of specimens within the group.  In carrying out 

the Monte-Carlo simulation of the distribution of distances of specimens within the group 

from the mean, we need to preserve this covariance structure to produce a valid model of 

the distribution.  To do this, we form the variance-covariance matrix of the CVA scores 

within a group, and then do an eigenvalue decomposition of this variance-covariance 

matrix to find the principal component axis of the within group variance-covariance 

matrix of CVA scores.  This yields the same number of variables as the CVA scores, but 

now with uncorrelated axis (the eigenvectors) each of which has a variance given by the 

corresponding eigenvalue.  So we may now form a model of the distribution that assumes 

the population has an independent random normal distribution along each of these 

eigenvectors (principle component of variation axes), with amplitudes given by the 

square roots of the eigenvalues (remember the eigenvalues are the variances of the group 

along the corresponding eigenvectors, so that the square root of the eigenvalue is the 

standard deviation of the population along that eigenvector). 



 So an independent, normal distribution with a known amplitude is assumed along 

each eigenvector.  This allows us to generate a Monte Carlo population of specimens, 

assuming the independent normal distribution along these principle component axis.  

Each specimen is generated using a random number generator to compute locations along 

the eigenvectors, which are then translated back into CVA axes scores.  The Monte Carlo 

generated CVA axis scores will have the same mean and variance-covariance structure 

as the original population did.  We can now calculate the distance from the group mean 

of each of the specimens generated by the Monte Carlo procedure and from these 

generated the distribution of distances under the null model of random variation that we 

which to test the Mahalanobis distances used for assignments against. 

 If the observed Mahalanobis distance exceeds a percentage 100(1-p) of the Monte 

Carlo distances, then the observed Mahalanobis distance has a probability p of being 

produced by the null model inherent in the Monte Carlo simulation.  A low p value is 

grounds to assert that the observed Mahalanobis distance is not consistent with the null 

model of random variation, and would lead us to doubt the validity of the assignment. 

 

Running the Assignments Test 

 

 Load all your specimens and grouplists (known and unknown data, as desired).  

Then use the Run Assignments Test on the Statistics menu.  Be a bit patient, this is a 

substantial simulation.  The program will then prompt you for a file name for the output 

file produced by the analysis. 



 The assignment of all known specimens will be shown first in the output file, an 

example is shown below: 

For the specimens with user group assignments 
Specimen GroupSymbol OrdinalGroup AssignedGroup AxesDistance Signif. 
 1   1   1   1   0.382469 p>0.05 
 2   1   1   1   1.793519 p>0.05 
 3   1   1   1   0.725210 p>0.05 
 4   1   1   1   1.880006 p>0.05 
 5   1   1   1   1.877013 p>0.05 
 6   1   1   1   0.513559 p>0.05 

The first column is the specimen number in the input data file, the second value is 

the group code assigned by the user to that specimen (taken from the Group Code file).  

The third column is the ordinal number of the group to which the user has assigned the 

specimen.  The software keeps track of groups by ordinal number, rather than by using 

the assigned group codes (don’t ask why…thanks…).  I will fix this eventually, but for 

the moment, you will have to look at the file to determine which of your group codes 

corresponds to ordinal number 1, which group code is two etc.  I really should fix this… 

 The fourth column is the ordinal number of the group which the CVA analysis has 

assigned the specimen.    The fifth column is the axis distance, which is to say the 

distance of that specimen from the group mean of the group which the CVA analysis has 

assigned that specimen.  The p-score in the 6th column is the probability under the Monte 

Carlo model described earlier that the observed distance (in the 5th column) could have 

arisen by chance.  For the specimens in the above example, all the p values are above 5%, 

meaning we could not reject the null of the Monte Carlo model, so we have no statistical 

reason to doubt these assignments. 

 Following the assignment of all known specimens (which had a user assigned 

group initially) is a listing of the assignments of all unknown specimens, if unknown 



specimens have been loaded into CVAGen6.  An example of this section of the output 

file is shown below: 

 

For the specimens with unknown group assignments 
Specimen GroupSymbol OrdinalGroup AssignedGroup AxesDistance Signif. 
 1   u   u   1   3.122955 p<0.001 
 2   u   u   1   2.674542 p<0.001 
 3   u   u   1   1.376086 p>0.05 
 4   u   u   1   1.580605 p>0.05 
 
The first column is the specimen number in the unknown file, the group symbol and 

Ordinal number are both unknown (u) since the group affinities are not known to the 

user.  The fourth column is the group (by ordinal number, see discussion above) of the 

group the CVA procedure has assigned the specimen.  The 5th column is the Mahalanobis 

distance of the specimen to the mean of the group to which it was assigned, followed by 

the probability that this distance could have arisen by chance under the null model used 

in the Monte Carlo simulation.  In addition to examining the p-scores in this example 

(which would allow us to reject the null model for several specimens in this case), it may 

perhaps be useful to compare the distribution of distances in for the known specimens 

versus the unknown specimens, as shown in the output file.  The unknown specimens 

have typically larger distances than the known in this example, leading us to suspect that 

the assignments of these unknown specimens to group 1 is probably not consistent with 

the null model.  See the CVA axis plot showing the distribution of the magenta symbols 

shown earlier in this document. 

Additions to the Assignment Test, Sept. 2004 

 Lorenz Hauser (U. of Washington) suggested adding the p-values for each group 

to the output file, rather than just the p-value for the closest group.  Having this 

information in the output file for the assignment test allows you to determine if an 



assignment is unique or not.  If we can reject the hypothesis that the specimen is within 

the typical range (95%) of all the groups except one, then the specimen may be uniquely 

assigned to that one group. 

 The option “Run Detailed Assignments Test” on the statistics menu will run the 

assignment test and output a file with the specimen assignment information, the 

Mahalanobis distance to each of the group means and the p-value associated with that 

particular distance for each group, as well as a code indicating whether or not the 

assignment was unique.  An assignment is said to be unique if the specimen falls within 

the 95% confidence interval (p>0.05) of one and only one group.   If the assignment is 

unique, the code will indicate which group it belongs to, a unique code of zero means 

there is no unique grouping. 

 

Further Changes to support use of the assignment test, November 18, 2004. 

After some suggestions from Arne Nolte, I have added two features to make the 

assignment test in CVAGen more useful.   

The first is an output file option to save the CVA scores of the unknown 

specimens to a file. This option is accessed on the file menu as “Save Unknown 

Spccimens CVA Scores”.  The scores of the unknowns are saved in the same order they 

appear in the input file of unknowns.  You can not use this option until you have loaded 

the unknows and the unknown group list. 

The second is a jackknife test of the effectiveness of the assignment test.  In this 

jackknife procedure, a percentage of the  known input data is randomly chosen as 

“unknowns”.  The CVA analysis is then carried out on the remaining known data, and the 



“unknowns” are assigned to one of the known groups.  The assignment test is used to 

determine whether each assignment is significant at 5% or not.  This is carried out for a 

large number of jackknife test sets.  The distributions of the 4 possible outcomes: 

-correctly assigned and judged significant 

-correctly assigned and judged non-significant 

-incorrectly assigned and judged non-significant 

-incorrectly assigned and judged significant 

If the discrimination and assignment test were working perfectly, we would expect all 

assignments to be correct and 5% of them to be judged non-significant (due to the fact we 

are working with estimated 95% confidence intervals in the assignment test).  Substantial 

numbers of incorrect assignments would be very worrisome, particularly if they are 

judged as significant.  The jackknife procedure gives us some sense of how effective we 

can expect the discrimination and assignment to be, given a specific data set. 

 To run the jackknife test of the functioning of the assignment test, load your data 

and group list for your known specimens as usual.  Then select the “Jack-knife 

Assignments” option on the statistics menu.  A pop-up window will then ask you to enter 

the number of jackknife resamplings to carry out (the default is 100) and the fraction of 

the data to use as unknowns in the jackknife (the default is 0.10 or 10%).  Of hand, I 

would suggest using 100 to 1000 jackknife sets, using 1% to 20% of your data as 

“unknowns”.  When you hit the “Okay” button, the program will run the jackknife test, 

which may take up to 10 minutes to run, depending on your computer speed.  I would 

suggest running it using 10 jackknife sets the first time, just to get a sense of how long it 

will take to run on your computer given your data.  The output will appear in the 



Auxillary Output window (AuxBox).  The example below shows the results of 100 

jackknifes of the threepir.txt data set: 

 

Results of the Jack-knife test of the CVA performance 
During this test using 91 total specimens 
 10.0 percent (10) were used as "unknowns" 
A total of 100 "unknowns" were tested in 10 trials 
 
96 (96.0 percent) were correct and significant 
 
4 (4.0 percent) were correct and non-significant 
 
0 (0.0 percent) were incorrect and significant 
 
0 (0.0 percent) were incorrect and non-significant 
 

Note that the output indicates the number of specimens in the entire data set, the 

percentage and number used as “unknowns” in each trial, and the overall percentages of 

each of the possible outcomes.  This particular trial looks very good, with no incorrect 

assignments and only 4% judged non-significant.  We would expect roughly 5% to be 

non-significant by chance. 



Alterations 7/25/06 (CVAGen6o) 

1.) I altered the behavior of the copy image to eps function, which had been cutting the 

edges off of some images, I think that it is working correctly now. 

2.) Fixed the plot density=30 setting so it works now. 

3.) Added some more group codes (up to 24 groups now).  The symbols are shown 

below: 
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