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 This method is designed to display patterns of covariance between two sets (or 

blocks) of data, one or both of which may be geometric morphometric.  The approach 

differs from a multivariate, multiple regression approach, which treats one set of 

variables as a function of the other set of variables.  In the Two-Block Partial Least 

Squares (2B-PLS) approach, the two sets are treated symmetrically, without the 

assumption that one set of variables is the cause of the other, rather that the two blocks 

covary.   

The 2B-PLS method is analogous to a principle components analysis, but applied 

to the between block covariance (or correlation) matrix, rather to a within block variance-

covariance matrix as would be the case in  PCA. The goal of PCA is to find a set of axes 

(the Principal Components) that express the greatest amount of variance within the group, 

the goal of 2B-PLS is to find pairs of axes, one for each block, that express the greatest 

pattern of covariance between the axes (called Singular Axes).  Like  PCA, the 2B-PLS is 

itself not a statistical test, both of these methods are decomposition methods that find 

axes that express patterns of variance (the PCA) or covariance (2B-PLS). The are several 

resampling tests that may be used to assess the statistical significance of the covariance 

pattern displayed by a 2B-PLS decomposition. 

Operation of the 2B-PLS Method 



 Suppose we have two blocks of variables measured for the same specimens, call 

these block 1 and block 2.  The 2B-PLS method can be used on any type of variable, we 

assume here that at least one block is a set of geometric morphometric data, specifically 

partial warp plus uniform component scores for each specimen, after a Procrustes 

Superimposition of the landmark configuration on a GLS Procrustes Reference.  The 

second block may also be geometric morphometric data, representing the shape of a 

second set of landmarks, but it could also be traditional morphometric variables (lengths 

and widths), or life history variables, ecological variables, behaviorial variables, etc.  

Suppose we have n specimens in the study, k variables in the first block and j variables in 

the second block.   

 If we wanted to carry out the familiar Principle Components Analysis of block 1, 

we would form a variance-covariance matrix S, which would be a k x k matrix, whose 

diagonal elements would be the variances of the k variables in the first block, and who’s 

off-diagonal elements are the covariances of the variables in the block.  To carry out the 

PCA, we would then calculate the eigenvalue decomposition of the variance-covariance 

matrix S.  This would yield k paired eigenvalues and eigenvectors, each eigenvalue is the 

variance expressed by the corresponding eigenvector (called the Principal Component 

Axes).  Since the Principle Component axes are the eigenvectors of a matrix, they are 

orthogonal to one another, and hence the PCA axes are statistically independent of one 

another, having no covariance.  The Principal Component axis expressing the greatest 

variance is called the first principal component, successively numbered axes express 

successively less variance.  A PCA of block 1 would yield k PC axes, and k 

corresponding eigenvalues, yielding a useful way of looking at patterns of variance 



within block 1, a similar study of variance within block 2 via PCA in a description of 

variance within block 2 expressed as j PC axes and j eigenvalues. 

 To study the pattern of covariation between blocks 1 and 2, we first form either 

the cross block covariance or correlation matrix.  When the variables within the blocks 

are in the same units (as is the case in working with shape data in the form of partial 

warps scores), it is preferable to use the covariance matrix, as use of the covariance 

matrix will give the aspects of shape with the largest variance the greatest weight in the 

analysis.  If the second block is not shape, but other variables, the second block should be 

standardized (to remove the effects of different scales of measurement) if all the variables 

are not in the same units.  The correlation matrix is perhaps best used in the case where 

both blocks contain variables which are measured in differing units, which will not be the 

case when one of the blocks represents shape in the form of partial warp plus uniform 

component scores. 

 The covariance matrix formed will be a k x j matrix S1-2 (S1-2 indicating 

covariance between blocks 1 and 2) of covariances between the k variables of the first 

block and the j variables of the second block.   The set of paired axes that express the 

greatest pattern of covariance between blocks is found using a Singular Value 

Decomposition (REFS!)  

  

 S1-2 = UΣVt 

where Σ is the k x j singular value matrix,  U is a k x k matrix whose columns are the 

singular axes for block 1 and V is a j x j matrix whose columns are the singular axes for 

block 2.   The SVD method is similar in many ways to eigenanalysis methods (ref!! and 



later material in this chapter), although the SVD operates on rectangular matrices.  The 

rectangular singular value matrix Σ has r singular values (σi) along the diagonal, r is the 

rank of the variance-covariance matrix of the smaller of the two blocks, in most cases r is 

the smaller of j and k.  If one block had a variable that was perfectly correlated with 

another variable in the same block, the rank of the variance-covariance matrix would be 

less than the number of variables within the block, although this is unlikely to occur in 

biological systems.  The singular axes for block 1 corresponding to the first singular 

value is the first column of U, the paired singular axes for block 2 is along the first 

column of V.  The singular values ( the σi) are the square roots of the covariance 

expressed between the corresponding paired singular axes. 

 It is now possible to compute singular axes scores for each specimen along each 

singular axes, in the same manner one would compute PCA axes scores for each 

specimen.   If X1 is the n x j data matrix for block 1 and X2 the n x k data matrix for block 

2, where each row represents a specimen and each column a variable, then the singular 

axes scores for block 1 (Y1) may be calculated as 

 Y1= X1U 

and the corresponding singular axes for block 2 are 

 Y2=X2V  

and the cross covariance matrix of Y1 and Y2 will be a j x k rectangular matrix who’s 

only non-zero elements are the square singular values which appear along the diagonal. 

 The singular axes are orthogonal, like the PCA axes, and form basis sets for the vector 

spaces of blocks 1 and 2, in the same manner that PCA axes do for a single block of data.  

The PCA scores are typically used to reduce the dimensionality of a system when 



studying patterns of variance, the 2B-PLS can be used to out the same function when 

studying patterns of covariance. 

 When the 2B-PLS method has been applied to partial warp plus uniform 

component scores representing shape, it is possible to plot the singular axes as patterns of 

shape variation using all the typical methods of displaying shape changes. 

Testing the significance of the Pattern of Covariance revealed by 2B-PLS 

 Prior to the interpretation of the patterns of covariance presented by the 2B-PLS 

method, it is necessary to determine if the patterns revealed differ from those expected by 

chance.  At present there appears to be no analytic approach to testing the significance of 

the 2B-PLS, but it is possible to determine via a permutation or bootstrap test if the 

singular values produced are consistent with a null hypothesis of no meaningful pattern 

of covariance between the block.   

 To carry out a permutation test of the significance of an observed singular value, 

we repeatedly permute the association of measurements in block 1 with the 

measurements in block 2 by random reordering or shuffling of the rows in the data 

matrix.  This generates data matrices with the same sample size and variance-covariance 

structure, but destroys any existing covariance between blocks.  The SVD decomposition 

is carried out for a large number of permuted data sets (typically 1000 permutations) and 

the range of singular values produced by the permutations is determined.  If the observed 

singular value exceeds the 95th percentile of the singular values produced by 

permutations, it is possible to claim that the observed singular value is significantly 

higher than produced by chance with a 5% level of confidence.  It is also possible to 

employ bootstrap sets of the data matrices (where specimens are bootstrapped 



independently in the two blocks) rather than permutations, the logic and interpretation of 

the bootstrap approach is identical to that of the permutation test. 

 It may also be productive to examine the correlation of the SVD axis scores 

obtained for the two blocks.  The permutation (or independent block bootstrap) test may 

also be used to determine if the correlation of the SVD scores exceeds that expected by 

chance. 

 It is also possible to compute a confidence interval on the correlation of the SVD 

axis scores, by bootstrapping the specimens in the analysis and repeating the calculations 

to arrive at a bootstrap estimate of the distribution of correlation coefficients possible 

given the distribution and sample size of the data sets.  Note that in this procedure, the 

two blocks are not treated independently, specimens are bootstrapped in a way that 

preserves the covariance structure between blocks, the bootstrap serves to estimate the 

variance in the overall analysis.  This estimate could be used to compare the between 

block correlations of different sets of specimens to one another {poor wording!  Fix}. 

Comparing Patterns of Covariance between Different Groups of Specimens 

  


